Plz do abide to our Terms & Condition:

    • Do not paste URL Links directly in any content instead post them as Hyperlink inside a text.
       
    • To post a Link directly use instead Bookmark.
       
    • If we find anyone posting beyond the warning we will immediately terminate your account without any warning. 

New research provides evidence of strong early magnetic field around Earth

New research provides evidence of strong early magnetic field around Earth

Deep within Earth, swirling liquid iron generates our planet's protective magnetic field. This magnetic field is invisible but is vital for life on Earth's surface: It shields the planet from harmful solar wind and cosmic rays.

Given the importance of the magnetic field, scientists have been trying to figure out how the field has changed throughout Earth's history. That knowledge can provide clues to understanding the future evolution of Earth, as well as the evolution of other planets in the solar system.

In order to determine the past magnetic field direction and intensity, the researchers dated and analyzed zircon crystals collected from sites in Australia. The zircons are about two-tenths of a millimeter and contain even smaller magnetic particles that lock in the magnetization of the earth at the time the zircons were formed. Here, a zircon crystal is placed within the "O" on a dime, for scale. Credit: University of Rochester / John Tarduno

New NSF-funded research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed. The research, published in the journal Proceedings of the National Academy of Sciences, will help scientists draw conclusions about the sustainability of Earth's magnetic shield, and whether there are other planets in the solar system with the conditions necessary to harbor life.

"This research is telling us something about the formation of a habitable planet," says paper author John Tarduno, Dean of Research for Arts, Sciences, and Engineering at Rochester. "One of the questions we want to answer is why Earth evolved as it did, and this gives us even more evidence that the magnetic shielding was recorded very early on the planet."

While the researchers initially believed that Earth's early magnetic field had a weak intensity, the new data suggest a stronger field. But, because the inner core had not yet formed, the strong field that originally developed 4 billion years ago must have been powered by a different mechanism.

"We think that mechanism is chemical precipitation of magnesium oxide within Earth," Tarduno says. The magnesium oxide was likely dissolved by extreme heat related to the giant impact that formed Earth's moon. As the inside of Earth cooled, magnesium oxide could precipitate out.

Earth's magnetic field today:

Today's magnetic shield is generated in Earth's outer core. The intense heat in Earth's dense inner core causes the outer core—composed of liquid iron—to swirl and churn, generating electric currents, and driving a phenomenon called the geodynamo, which powers Earth's magnetic field. The currents in the liquid outer core are strongly affected by the heat that flows out of the solid inner core.

Because of the location and extreme temperatures of materials in the core, scientists aren't able to directly measure the magnetic field. Fortunately, minerals that rise to Earth's surface contain tiny magnetic particles that lock in the direction and intensity of the magnetic field at the time the minerals cool from their molten state.

Using new paleomagnetic, electron microscope, geochemical, and paleointensity data, the researchers dated and analyzed zircon crystals—the oldest known terrestrial materials—collected from sites in Australia. The zircons, which are about two-tenths of a millimeter, contain even smaller magnetic particles that lock in the magnetization of the earth at the time the zircons were formed.

 

Meril Jeffery John.J

Meril Jeffery John.J

If This is God's Will then no man can Fight it

Ratings

0/5 (0 votes)
0/5 (0 votes)